Numerical and experimental dynamic characteristics of thin-film membranes

نویسندگان

  • Leyland G. Young
  • Suresh Ramanathan
  • Jiazhu Hu
  • P. Frank Pai
چکیده

Presented is a total-Lagrangian displacement-based non-linear finite-element model of thin-film membranes for static and dynamic large-displacement analyses. The membrane theory fully accounts for geometric non-linearities. Fully non-linear static analysis followed by linear modal analysis is performed for an inflated circular cylindrical Kapton membrane tube under different pressures, and for a rectangular membrane under different tension loads at four corners. Finite-element results show that shell modes dominate the dynamics of the inflated tube when the inflation pressure is low, and that vibration modes localized along four edges dominate the dynamics of the rectangular membrane. Numerical dynamic characteristics of the two membrane structures were experimentally verified using a Polytec PI PSV-200 scanning laser vibrometer and an EAGLE-500 8-camera motion analysis system. 2004 Published by Elsevier Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Potential of Nanoparticles for Upgrading Thin Film Nanocomposite Membranes – A Review

Over the past decade, many applications were intended for filtration by membrane technology especially the thin film composite (TFC) membranes. In advanced developments of thin film membranes, an attempt was made to spread a new generation of membranes called thin film nano composite (TFN) membranes. However, in the last generation of TFNs, an ultrathin selective film of nanoparticles is coated...

متن کامل

Anionic/Non-ionic Surfactants in Aqueous Phase of Thin Film Composite Poly(Paraphenylene Terephthalamide) Nanofiltration Membranes

In this work, the Interfacial interfacial polymerization (IP) technique was employed using terephthaloyl chloride (TPC) and p-phenylenediamine (PPD), as reactant monomers, to prepare poly(paraphenylene terephthalamide) thin film composite (TFC) nanofiltration on polyethersulphone (PES) support layer. The effects of six different anionic and non-ionic surfactants, in the aqueous phase on the mor...

متن کامل

Thin film nanocomposite forward osmosis membrane prepared by graphene oxide embedded PSf substrate

One of the limiting factors in good performance of forward osmosis (FO) membranes is the internal concentration polarization (ICP). To reduce ICP, thin film nanocomposite forward osmosis (TFN-FO) membranes were fabricated by adding different amounts of graphene oxide (GO) nanoplates (0-1 wt. %) to polymer matrix of polysulfone (PSf) substrate. The prepared nanocomposite membranes exhibited both...

متن کامل

Synthesis and characterization of high flux and antibacterial film nanocomposite based on epoxy-zeolite NaA

A high flux thin-film nanocomposite membrane epoxy/ zeolite NaA nanocomposite films prepared by using ultrasonic mixing and spin coating. The synthesized nanocomposites film was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal gravity analysis (TGA), and FTIR spectroscopy. Water softener and water flux characteristics of the epoxy/ zeolite NaA nanocomposite ...

متن کامل

Experimental and Numerical Studies on the Characteristics of Simple and Multi-cell Shapes of Quasi-hemisphere Thin-walled Structures

 Thin-walled energy absorbers are used to reduce accident induced damages. In this study, thin-walled stainless steel structures in quasi-hemisphere geometry were subjected under quasi-static loading with Santam 150KN apparatus. Experimental results were compared with results of numerical simulations by LS-DYNA and it was shown that there is a good agreement between experimental and numerical r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005